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ABSTRACT

Certain arrangements of local features in a scene

tend to group together and to be seen as units. It is

suggested that in some instances, this phenomenon might

be interpretable as a process of cluster detection in a

graph-structured space derived from the scene. This

idea is illustrated using a class of scenes that contain

only horizontal and vertical line segments.
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1. Introduction

The Gestalt psychologists have pointed out [1] that

certain arrangements of parts or local features in a scene

tend to group together and to be seen as units. In [2],

it was suggested that some types of these groupings can be

interpreted in terms of spot and streak detectors of various

sizes applied to the scene. For example,

a) If there are two or more types of such local features

present -- spots and streaks, small spots and large

spots, horizontal streaks and vertical streaks, etc. --

then each type may constitute a grouping; this illu-

strates the GestaltistS' "Law of Similarity".

b) A dense cluster of objects on a sparser background

constitutes a grouping, perhaps because it is detected

by a single coarse spot (or streak) detector; this il-

lustrates the "Law of Proximity".

c) Objects that lie along a line group together, perhaps

because they are detected by a single streak detector;

this illustrates the "Law of Good Continuation".

Other types of groupings discussed by the Gestaltists,

however, cannot readily be interpreted in this way. Con-

sider, for example, Figure 1. The drawing can be "seen"

as two squares sharing a common side, or as a rectangle

with a horizontal line across it; but it is considerably

harder, if not impossible, to see it as (e.g.) an E with a

vertical line down its right side, even though E's are very

familiar figures. In any event, none of these groupings

readily lends itself to an explanation in terms of (a-c).

They all involve both horizontals and verticals, ruling out

(a); they are not cluster-like, so that (b) does not apply;
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nor can they be accounted for. solely in terms of col-

linearity, so that (c) is insufficient.

The purpose of this report is to suggest an interpre-

tation of certain types of grouping in a scene in terms of

a process of clustering in a graph-structured space derived

from the scene. This process has been implemented for a

class of scenes that contain only horizontal and vertical

line segments. The possibility of generalizing it to wider

classes of scenes is also discussed.

The clustering procedure to be described below resem-

bles in certain respects the procedure developed by Guzman

[3] to "group" regions in a scene that belong to the same

polyhedral "body". Guzman makes use of local features such

as collinear or parallel segments, L's, T's, etc., to es-

tablish "links" between pairs of regions. If a set of re-

gions is linked to a sufficiently strong degree, it consti-

tutes a "body". In the present scheme too, line segments

will be linked on the basis of local information (L's,

T's, etc.), and sets of segments that have strong mutual

linkages will be taken to constitute natural "groupings".

An important difference between the two schemes is that

Guzman's groupings are essentially connected components

(under the transitive closure of the relation "is strongly

linked to"), so that distinct groupings cannot have regions

in common; whereas in the present scheme, the groupings are

clusters, and two clusters can share a segment (e.g., the

two squares in Figure 1 have a common side).

It should be stressed that the present procedure is

not the only one that can be devised to produce reasonable
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groupings of parts in a line drawing. The procedure is

undoubtedly also much simpler than would be required to

account for the wide range of grouping phenomena that

can be observed in such drawings. It is presented here

only as simple illustration of a class of possible pro-

cedures in which groupings in a scene correspond to clusters

in a data structure. On the idea that cluster detection

processes may play an important role in the functioning

of the brain, see [41.
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2. Clusters

In this section we describe how graph structures will

be derived from line drawings. The nodes of the graph will

represent the segments in the drawing; the edges, repre-

senting links between pairs of segments, will be constructed

as described in the following paragraphs. By a cluster in

the graph we shall mean a maximal complete subgraph (MCSG);

for a discussion of this and other graph-theoretic cluster

concepts, see e.g., [5]. Our objective is to define the

graph in such a way that clusters will correspond to natu-

ral groupings of segments in the drawing. A more compli-

cated question is that of determining which combinations

of these groupings are seen simultaneously in the drawing

(e.g., for Figure 1, the rectangle and line should be one

such combination, the two squares should be another); dis-

cussion of this question will be deferred to Section 3.

Two (noncollinear) line segments will be said to form

an L if they have a common endpoint.

Rule 1: Two segments are linked if they form an L

Rule 2: Two segments are linked if they form L's with a

third segment, on the same side of it.

For example, by Rule 1, segments x and y would be linked

in the case shown in Figure 2a, but not in the case of Fig-

ure 2b (since in the latter case the segments from a T, not

an L; on the treatment of T's, see below). By rule 2, seg-

ments u and v would be linked in Figure 2c, but not in Fig-

ure 2d.

In Figure 1, the segment pairs (1,2), (1,4), (2,5) and

(4,5) are linked by virtue of Rule 1, and the pairs (1,5)
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and (2,4) are linked by virtue of Rule 2; but segment 3

is not linked to any other segment. Thus the graph for

Figure 1, according to Rules 1-2, is as shown in Figure

3. It is seen that the subgraphs {1,2,4,5} and {3}, cor-

responding to the rectangle and the central line segment,

are indeed MCSG's. However, there is no obvious way of

obtaining the two squares ({1,2a,3,4a} and {2b,3,4b,5])

as clusters from this graph; indeed, the segments 2a,2b,

4a,4b are not even represented by nodes. To obtain the

squares, we must introduce an additional rule.

Two (noncollinear) segments will be said to form a

T if an endpoint of one of them (the "leg" of the T)conin-

cides with a non-endpoint of the other one (the "cross-

bar" of the T). The two segments will be said to cross

(or form a C) if they have a point in common and it is

not an endpoint of either of them. The idea underlying

our final rule is that T's and C's are ambiguous configu-

rations. One can regard a T as made up of two L's; in

other words, one can regard its crossbar as consisting of

two (collinear) segments, so that, by Rule 1, the leg is

linked to both of these segments. On the other hand, if

one regards the crossbar as a single segment, the leg should

presumably not be linked to it, since it does not split at

the point where the leg meets it, Similarly, a C can be

treated in two ways; its two segments can be regarded as

split into four at their intersection point, so that they

form four L's (and are linked pairwise), or they can be

regarded as two unsplit (and hence unlinked) segments.

The ambiguity of T's and C's implies that if a draw-

ing contains them, it can give rise to at least two graphs --



one in which T's and C's are .split, the other in which

they are not. (Conceivably, one could also consider more

complicated possibilities, e.g., all T's split but no C's

do, or some individual T splits but no others do, etc.; but

it has not been found necessary to introduce such possi-

bilities in the present scheme). In the case of Figure 1,

if the T's split, segments 2 and 4 break up into 2a and

2b, 4a and 4b. Since segment 3 now forms L's with these

segements, Rules 1 and 2 introduce six new links, and the

graph for Figure 1 becomes as shown in Figure 4. Here the

MCSG's evidently correspond to the two squares. Thus the

ambiguity of Figure 1 can be attributed to the two ways

of interpreting the T's that occur in it.

Before summarizing these remarks about T's and C's

in the form of a third rule, we must point out one additional

complication regarding the treatment of T's. In the fore-

going, it has been assumed that when a T splits, the cross-

bar is replaced by its two parts. Consider, however, Fig-

ure 5. Here, if the T's are not split, by Rules 1-2, there

are links between the setment pairs (1,2), (1,4), (2,6),

(5,6), (3,5), (1,6), (3,6), (2,4), and (2,5). This yields

a rather complex graph (Figure 6a; the MCSG's are {1,2,4},

{1,2,6}, {2,5,63 and {3,5,6 3)o If we split the T's, the

graph becomes as shown in Figure 6b; here the upper rec-

tangle corresponds to the MCSG {1,2a,3a,43, but the lower

rectangle is not an MCSG, since its upper side has been

split into {3a,3bl.

This problem can be avoided by stipulating that when

a T is split, the crossbar is retained in addition to, rather

than replaced by, its two parts. When this is
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done, the parts are linked to the leg of the T, as already

indicated, and if the whole crossbar was linked to any

segments lying on the same side of it as the leg, the ap-

propriate parts (i.eo, the ones that form the L's) are

linked to these segments instead, If there were links

to segments on the side opposite the leg, however, such

segments do not get linked to the parts, but remain linked

to the whole crossbar. In Figure 5, for example, when the

T crossbar segment 3 is split, its parts 3a and 3b are

linked to the leg (4), but the parts are not linked to

segment 5, since it lies on the side of 3 opposite the leg;

5 thus remains linked to 3 itself. When segment 2 is

split, its parts 2a and 2b become linked to segments 1 and

6, respectively; moreover, 2a is linked to 3a (since it

lies on the same side of 3 as the leg 4), but 2b is linked

to 3*. The resulting graph is as shown in Figure 6c; in

it, both the upper and lower rectangles now correspond to

MCSG's ({1,2a,3a,4] and (2b,3,5,6).o [Segment 2 is no

longer linked to anything in this graph and so is a one-

node MCSG; and t3b,4], corresponding to the exterior L in

Figure 5, is also an MCSG. The significance of these MCSG's

to the interpretation of the drawing will be discussed in

the next section.]

In Figure 1, when the T's are split, the crossbars

are no longer linked to anything, since all of their previ-

ously existing links were to segments on the same side of

them as the leg. Thus the "split graph" of Figure 4 should

*If 2 is split before 3 is split, both 2a and 2b become linked
to 3; but when 3 is then split, the link to 2a is transferred
to 3a, since 2a lies on the same side of 3 as the leg. Thus
the order in which splitting is performed is irrelevant; in
fact, it should be regarded as performed in parallel.
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also contain nodes corresponding to segments 2 and 4 them-

selves, but these are now isolated nodes (and, as will be

indicated in the next section, are unimportant to the

interpretation of the drawing.) Analogously, whenever

a cross splits, the two original line segments are no

longer linked to anything, since there are "legs" on all

possible sides, so that all possible links get transferred

to the parts. In the case of the cross, the original seg-

ments can thus be ignored. Similarly, if a segment is

the crossbar of T's having legs on both sides of it, the

original segment will be linked to nothing after the links

have been transferred to the parts. In the examples to be

given below, isolated nodes corresponding to crossbars that

are linked to nothing will not be shown.

In summary, we can now state

Rule 3: If two segments form a cross, they can either be

split into four segments or left unsplit. Simi-

larly, the crossbar of a T can either be split

into two segments or left unsplit. In the latter

case, links to segments on the side of the cross-

bar opposite the leg remain attached to the cross-

bar; all other links are transferred to the ap-

propriate parts.

An alternative idea might be to keep all previously existing

links attached to the crossbar as well as transferring them

to the appropriate parts, However, this would yield graphs

that were more complicated and that had many additional

MCSG's. For example, in the case of Figure 1, {2,1,4a},

{2,5,4b}, {2a,1,43 and {2b,5,4] would all be MCSG's. These

would presumably be unimportant by virtue of the discussion
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in the next section, but the added complexity still seems

undesirable. One way of suppressing such MCSG's entirely

would be to regard a complete subgraph as a cluster only

if it is maximal in the drawing; the four MCSG's just

listed would be rejected on these grounds, since they cor-

respond to parts of the drawing that are all contained in

the rectangle (corresponding to the MCSG [1,2,4,5}), which

is thus "bigger" in the drawing than each of the four.

However, it seems preferable to work with a definition of

cluster that makes reference only to the graph, rather than

having to refer back to the drawing, (Moreover, in Figure

9 below, the alternative definition would not reject the

four rectangles (la,2,3,6al, {lb,3,5,6b}, [1,2a,4,5a} and

£2b,4,5b,63, since they are maximal in the drawing; but

these do not seem to be as "good" as the large square or

the four small squares. Worse yet, in Figure 11, MCSG's

such as {2,1a,3a) would not be rejected.)

Some additional examples of graphs obtained from line

drawings using Rules 1-3 are shown in Figures 7-12.

An example of a case that may not be adequately handled

by Rule 3 is shown in Figure 13, Here, if no segments split,

the MCSG's correspond to the outer square and the two line

segments; if all segments split, they correspond to the

three rectangles. There is no way to get the two larger

rectangles and the small line segment without splitting

some T's but not others, However, it is not clear whether

this last interpretation of the drawing is as "good" as

the first two.

-11, ,
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3. Combinations of clusters

In all of the examples given in Section 2, the MCSG's

seem to correspond to reasonably good groupings. If a

subset of a drawing does not correspond to an MCSG, or

union of MCSG's, it is hard or impossible to see this sub-

set as a grouping. The "E" hidden in Figure 1 is an ex-

ample of this. (In Figure 14, on the other hand, the "E"

is a union of MCSG's ((2,3,53 and {4)) in the unsplit graph,

and indeed is much less well hidden,)

However, not all of the clusters obtained by the

method of Section 2 correspond to equally good groupings.

For example, in Figure 6c one of the MCSG's ([3b,43)cor-

responds to an expterior "L" in Figure 5; but this L is

certainly not as good a grouping as are the two rectangles

({1,2a,3a,41 and {2b,3,5,6]). A similar remark applies to

Figure 10; here the split graph has four MCSG's ({2a,4al,

t3a,4c], {2c,7a], and {3c,7c]) that correspond to exterior

L's, but these are certainly not as good as the five squares

({1,2a,3a,4b), {2b,4a,5,7a}, {2b,3b,4b,7b), [3b,4c,6,7c3, and

{2c,3c,7b,8]).

No attempt will be made here to formulate precise rules

for determining the relative goodness of groupings. How-

ever, a few general guidelines and illustrative examples

can be given,

It seems reasonable to assume -- eog., on grounds of

information compression -- that if each of two collections

of groupings completely covers the figure, the smaller of

the two collections should be preferable to the larger one.

Let us suppose that in Figure 1, the two interpretations

(rectangle + line, square + square) are equally good, since



each involves just two 1-CSG's. Now consider Figure 15.

Here the rectangle and line (which are still the MCSG's

of the unsplit graph) still cover the drawing; but the

two squares (which are MCSG's of the split graph, but not

the only ones) no longer cover the drqwing completely.

Thus one might expect that the rectangle and line should

be a better combination of groupings for Figure 15 than

would be combinations involving the two squares (since

the latter combinations require more parts), and this

does indeed seem to be the case.

On similar grounds, it seems reasonable to assume

that large groupings (i.e., large MCSG's) should be pref-

erable to small ones. A class of examples which may be

related to this idea is provided by Figures 6c, 10, etc.;

here the L's are less noticeable than the squares, per-

haps because they correspond to smaller graphs. Note that

in each of these cases the L's are also not needed to cover

the drawing, since the squares already cover it. However,

this alone would not necessarily suffice to make the L's

less conspicuous; in Figure 10, the center square is not

needed to cover the drawing either (and in fact, the draw-

ing can be seen as four touching squares surrounding a

hole, rather than as five squares), yet it is still far

easier to see the center square than it is to see the L's.

A small grouping can apparently be "overcome" by a

large one even if it is not completely covered by large

ones. As an example, consider Figure 16. Here the split

graph yields the rectangle and an L ({3,4b3) as clusters;

but one sees the drawing as consisting of a rectangle and

a line, not a rectangle and an L. Apparently, since one
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segment of the L belongs to the rectangle, the larger

cluster "overcomes" the smaller one, i.eo, breaks it apart,

so that only the line segment (4b) remains unaccounted for.*

As a final example, consider Figure 17. Here the

arches that are open upward can be seen as "stalactites",

or the arches that open downward can be seen as "stalag-

mites"; but only one of these interpretations is possible

at a time. This suggests that the clusters for this draw-

ing (the three-node MCSG's shown in the figure) cannot all

be seen at once; only alternating ones ({1,2,33, {5,6,73,

and [9,10,113, or {3,4,53, {7,8,93, and {11,12,133, but

not both) can be seen at any given time. In the split

graph of Figure 8, on the other hand, the four-node MCSG's

corresponding to the squares can all be seen at once. In

other words, the segments in Figure 8 can have links in

opposite directions simultaneously, but the segments in

Figure 17 cannot. A possible explanation of this phenomenon

might be that four-node MCSG's are so "strong" that they

cannot be "overcome" even by others of their own kind; com-

pare the case of the central square in Figure 10.

*In Figure 7, similarly, one can see the drawing as consist-
ing of the two long vertical lines (present, but not shown,
in the split graph) and the two rectangles, perhaps because
the incomplete rectangles are pulled apart by the complete
ones;the long lines are then preferable to the four short
segments because fewer of them are needed to account for
the remainder of the drawing.
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4. Possible alternatives and extensions

The method used in this report to define the graphs

of line drawings is certainly not the only possible one.

For example, one could consider a scheme in which pairs

of line segments are regarded as "surrounding" areas (e.g.,

the areas obtained by joining the endpoints of the seg-

ments), and pairs of these areas are linked if they over-

lap. However, such schemes do not seem to lead to simpler

rules than the scheme used above.

The definition of cluster used in this report is also

not the only alternative, For example, there is another

standard class of definitions based on the notion of k-con-

nectivity: a subgraph is k-connected if it cannot be dis-

connected by deleting fewer than k of its nodeso Suppose,

in fact, that we took clusters to be maximal 2-connected

subgraphs rather than maximal complete subgraphs, At first

glance, this would seem to make it possible to simplify the

rules used to define the graph; indeed, if Rule 2 were elimi-

nated, a rectangle would no longer have a complete graph,

but its graph would still be 2-connectedo However, consider

Figure 9; here the entire split graph (with the edges due

to Rule 2 deleted) is 2-connected, so that the squares are

not maximal 2-connected subgraphso

Another possibility for modifying the present scheme

is with regard to the types of links used. For example,

one could consider linking two segments if they are parallel

and aligned at (one or both of) their ends. The strength

of such links would presumably have to vary with the lengths

of the segments and the distance between them; in Figure

18a, for example, the close pairs of parallels seem to be
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much more strongly linked than the distant pairs, since

it is almost impossible to group the parallels in any

other way than into close pairs. Note, however, than in

Figure 18b, it is almost as easy to group the more distant

pairs as it is to group the close pairs [1]. This sug-

gests that the links introduced when L's (and T's) are

present may be, in some sense, much "stronger" than the

links due to parallelism, since the linkages between the

close pairs of parallels are"broken"as soon as the con-

necting lines are added. It may therefore not have been

unreasonable to have ignored parallelism links in con-

structing the scheme described in this report.

In principle, it should be possible to generalize

the present scheme to wider classes of scenes, involving

line segments at arbitrary orientations, or even arcs and

curves. For example, one might segment a curvilinear

drawing at curvature maxima ("angles"), and link pairs

of segments that meet at an angle (Rule 1), or that meet

a third segment, on the same side of it, at angles (Rule

2). T's and crosses in the present scheme would correspond

to branch points ("Y-junctions", "X-junctions", etc.) in

the general case. Such generalizations are currently being

investigated, and will be the subject of a future report.
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to Figure 1 according
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plete squares,
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graph yields the four squares.

ei<
I - w



3a 5
3

4

4a 4b

3 5

6a
6

6b

Unsplit graph

-3

A.4

6

Split graph

Figure 9. The unsplit graph yields the outer square
and the cross; the split graph yields the
four small squares.
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Figure 10. The unsplit graph yields the two
rectangles; the split graph yields
five squares (together with four L's).
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Figure 11. The unsplit graph yields the outer square
and the T's inside it; the split graph
yields the four rectangles and inner square.
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5

Figure 12. The unsplit graph has many MCSG's (compare
Figure 6a); the split graph yields the three
squares (and an L). Here the rectangles can-
not be obtained except one at a time, by
preferential splitting.
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Unsplit graph

2

3

5

4 1

Figure 14. The E is much more poorly hidden than
in Figure 1.

Figure 13. The unsplit graph yields the square and
two segments; the split graph yields three

rectangles. To get the two large rectangles
and the small line segment, it would be

necessary to split just two of the four T's.
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Figure 15. Here the rectangle and line "cover" the
drawing with fewer pieces.
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Figure 16. This is seen as a rectangle and
line, not as rectangle and L.
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Figure 17. This can be seen as bounding the
region above it or the region below
it, but not both at the same time.
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Figure 18. Links between pairs of parallels.
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Appendix: Description of the data structure and programs

Al. Data structure

The data structure provides for storing information

about each input line segment and its relationships with

other segments. Not all of this information is used by

the present cluster-finding programs; some of it was in-

corporated to allow for the possibility that alternatives

to the present programs might prove desirable.

For each line segment, the structure provides for

eight types of pointers to other segments:

No. Type Relationship between the segments

1 T T-junction

2 L L-junction

3 C C-junction

4 P Parallel aligned at both ends

5 W Weak parallel (aligned at only one end)

6 V Very weak parallel (aligned at neither end)

7 CL Collinear

8 LL Making L's on same side of another segment

The information about each line segment is stored in a block

of N words, where N = N=lNi (Ni being the number of pointers

of type i).

The first word contains the length of the line seg-

ment (bits 0-11), and 12 other bits (24-35) that provide

the information indicated in the following table; the re-

maining bits of this word are reserved for possible future

use.



Bit No. Significance if equal to 1

35 Line is nondegenerate (i.e., has length > 0)

34 Line is vertical (if = 0: horizontal)

33 Line has been split

32-25 Line stands in relationship T (L,C,P,W,V,CL,LL) to

at least one other line

24 Line has been erased

The second word consists of three 12-bit fields. If the

line segment is horizontal, its y-coordinate is stored in

bits 24-35, and the x-coordinates of its endpoints in

bits 0-11 and 12-23. If it is vertical, the stored in-

formation is analogous, but with x and y interchanged.

Words 1-2 of the block are referred to as "LINFO"

subblock.

In the third word, bits 0-11 (the ''FATHER" field)

point to a line segment, if any, from which the given one

was derived by splitting. Bits 12-23 (the "LREF" field)

have value 1 for input segments, 2 for splits, 3 for splits

of splits, etc. Bit 35 (the "LNKBIT") has the value 1 if

the line segment is part of another line, 0 otherwise.

In the fourth word, bits 0-11 (the "NEXT" field) point

to the line segment, if any, that is collinear with the

given one and immediately on its right (for horizontal seg-

ments; below it, for vertical segments). Bits 12-23 (the

"PREV" field) point to the collinear segment (if any) im-

mediately to the left of (or above) the given one. Bits

24-35 (Ithe "SON" field) point to the leftmost (or topmost)

segment obtained by splitting the given one, if it does in

fact split. Words 3-4 of the block are referred to as the

"SEG" subblock.
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In the next group of N1 words, information about T-

relationships involving the given line segment is stored.

Each of these words consists of four fields. Bit 35 (the

"FLAG") indicate whether or not the T-junction in question

has been split. Bits 24-29 (the "RELPOS" field) are used

to indicate the orientation of the T:

Value of Orientation

RELPOS of T

0 T

1 

2

3 d

Bits 12-23 (the "LINKWT" field) allow for storage of

a weight associated with the given T-link (see below).

Bits 0-11 (the "LINK" field) contain the number of the

line segment (i.e., the position of its block in the ar-

ray of line segment blocks) that forms the T-junction with

the given one.

The succeeding groups of N 2 1 N3,...,N7 ,N 8 words store

analogous information about L,C,P,W,V,CL,LL relationships

involving the given line segment. In each of these groups,

the format of each word is the same as for the T-words. For

L,P,CL,LL relationships, the FLAG field is not used, since

splitting is not applicable in these cases. For L relation-

ships, the values of RELPOS correspond to the following

orientations:

Value Orientation

0 L

1 

2

3 "
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The method of assigning weights to the various types

of links is as follows:

1) The weights assigned to C-, T-, L-, LL-, and

CL-links are constant. Specifically, the link weight as-

sociated with each C-, T-, L- (or LL-), and CL-link is

equal to 0,1,2, and 4, respectively.

2) The weights assigned to P-links, W-links, and V-links

vary as the ratio of the length of the shorter of the two

parallel lines and the distance between the lines.

For example, let the lines have lengths L 1
and L2, where

L 1 5 L2, and let D be the distance between them. Let

WT = 4 for a P-link
o

2 for a W-link

1 for a V-link

Then the link weight WT is assigned as follows:

If d = L
1

then WT = WT

If d < L1
then WT = 2WT

0

If d > L1 then WT = ½2WT
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A2. Programs

Input: Each line segment is input as a quadruple (NVH,NZ,

N1,N2), where

NVH denotes the orientation of the line

NVH = 2: horizontal

NVH = 3: vertical

NZ denotes the x-coordinate of a vertical line,

the y-coordinate of a horizontal line

N1,N
2
denote the y-coordinates of the endpoints

of a vertical line

the x-coordinates of the endpoints of

a horizontal line

Subroutine READIN reads in and counts the input segments.

The quadruples are stored in array ARRAY, one segment per

block, in the first two words of the block; the format for

each block is as described in Section Alo The segments are

counted, and their number is stored in variable NLINE.

Link generation: The conditions for generating links be-

tween segments are as follows:

Suppose L
i

= (NVHi., NZ
i
Nl

i
, N2

i
) and

Lj = (NVHj, NZj, Nlj, N2j),

where i j j and i • i,j • NBLK

(1) Generation of a T-link requires

(a) NVHi d NVH. and

(b) NZ. = N1. or NZ. = N2.

(c) Nl. < NZ. < N2.

or (b') NZj Nli or NZ. = N2.i;

(c') Nl. < NZ. < N2.
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(2) Generation of an L-link requires

(a) NVHi Z NVH. and

(b) Nli. = NZ.
1 I

or N2. = NZ.

or Ni. = NZ.
i 1

or N2. = NZ.
j 1

(3) Generation of C-link requires

(a) NVHi M NVH. and
1 3

(b) N1. < NZ. < N2. and

(c) Nli. < NZ. < N2.
1 ] 1

(4) Generation of a P-link requires

(a) NVH. = NVH. and
1 ]

(b) Nli = Nlj and

(c) N2i - Nli = N2j - Nlj 

(5) Generation of a W-link requires

(a) NVH. = NVH. and

(b) Ni. = Nlj (or N2. = N2.) and

(c) 1N2i - Nli1 = tlN2j - Nlj , where t # 1

(6) Generation of a V-link requires

(a) NVH. = NVHj and

(b) Nli. < Ni. < N2. < N2.
1 j ] 1

or Ni. < Ni. < N2. < N2.

(7) Generation of a CL-link requires

(a) NVH NVH. and

(b) NZ. = NZ. and
1 N

(c) N2. < Ni. or N2. < Ni..
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(8) Generation of an LL-link requires that there exist

at least one Lk = (NVHk,NZk,Nlk,N2 k), where k d i,j

and 1 < k < NBLK, such that

a) Li and Lj are both related to Lk by L-links

b) IRELPOSik - RELPOSjkI = 2 if Lk is horizontal;

- l*if Lk is vertical (where RELPOS denotes

the orientation of the L formed by Lk and Ly)

Subroutines LNKGN and GLINKL determine the links

that exist between the pairs of segments in ARRAY, and

store the information about these links in ARRAY. LINKGN

is used for the first seven types of links (one call per

type), and GLINKL for the LL-links.

Line splitting: For each input segment S the segments re-

lated to it by the C relationship are found by a call to

subroutine LINKGN. The coordinate of the split point cor-

responding to each of these is then determined. These

coordinates are put into order of increasing x (or y).

(If there are no split points, bit 33 in the first word

of S's block is set to 0; otherwise, to 1.) The subsegments

between successive split points are regarded as new line

segments, and are added to ARRAY using subroutine READIN.

Further information about these segments (see LREF, NEXT,

PREV, etc. in section Al) is also stored in ARRAY. The

total number of segments is stored in variable NOLIN.

For each line segment S which splits, bit 24 in the

first word of S's block is set to 1 to indicate that this

line segment is deleted (i.e., the line segment S will not

be used for subsequent line splitting). The T-links between

pairs of segments are then determined and stored in ARRAY

by one call to subroutine LINKGN. For each line segment S,

*and the condition 1) RELPOS - 1 and RELPOS = 2 or 2) RELPOSij
ik jk2 and RELPOS 1 is not true.

jk ,



two sets of split points are determined, corresponding to

legs of T's that lie on the two sides of S. The resulting

subsegments are then regarded as new line segments. If

both sets of split points are nonempty, segment S is marked

as deleted. Again, the total number of line segments is

stored in variable NOLIN.

Generation of matrices and cluster detection: In order to

apply the cluster detection procedure described in the

body of the report, two types of links between pairs of

line segments, L and LL, are determined and are stored in

ARRAY by calls to subroutines LINKGN and GLINKL, respectively.

This is done both for the set of input line segments and for

the set of segments that results after line splitting.

Two matrices (aij)mx
n

and (bij)nx
n

are then generated;

m and n are the numbers stored in variables NLINE and NOLIN,

respectively. Element (i,j) of each matrix is the link weight

between line segment Si and line segment S.. These matrices
2. J

can be regarded as defining graphs (two nodes are joined by

an edge if the link weight is 2). All maximal complete sub-

graphs of these graphs may then be obtained*. The line seg-

ments corresponding to the nodes of these subgraphs can then

be printed out.
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A3. Sample output

Input segments

I oooooooo000000000oi oooo0000o3
2 0ooooooooo03 001000000oo3
3 400000000034 00340000003q
q 6000o00000016 000000160034S 6ooooooooo3~ oo:Ioooooo3~00300000000033 0016000030
6 60000000003' 00O3400OOO3'

Display of input drawing

EAAAAAAAAAAAAAP
C r
E r
C F
C P
E r
E P
E r
E P
E r
E r
E P
E F

OSBBBOBSBES BBBBBBBBBBSP

D E ro E r
o E r

o E r

D ccccccc cccccE rccccCCCCcCE

DCCCCCCCC C CCEcCCCCCCCCCCCCC



Incidence matrix for unsplit graph

1 2 3 4 S 6

1 O O 2 0 2 2
2 0 0 2 2 00
3 220 2 0 2
4 0 2 t 0 0 2
5 2 0 0 0 0 2
6 2 0 2 2 2 0

Incidence matrix for split graph (original crossbars kept
for T's but not for C's)

*'~'~-, r~*T 2 J * q

I 00 2 0
2 0 a 0 0
3 2 002
4 0 o t O
6 O o a o
4 2 0 Z2
7 0 0 2 2
8 2 020
9 2 0 0 0
0o 0 0 0 2

1 0 o o 2
j2 2 0 0 0
13 2 0 0 0
1 °0 O 2 2

5 6 7 8 9 10 11 12 i3 1'

0 2
0 0
0 2
o 2
a a
0 0
a a
0 0
0 2
0 2
0 0
0 2
a 0
0 0

0 2 2 0 0 2 2 0
0J0000000
22000002?* 2 0 O O o 0 2

2 o o 2 2 o o 2
00000000
00220200
00222000

9 o t 2 0 2 2 2
! 2 o o o o 2 Z
?Z 0 o 2 0 o o0o 2 0 0 o o o 2

o 2 2 o2 0 0 2
20 2o 2000

0 2 0 Z 0 2 0 0

iI



S 3

E^AAAAAAAAAAAAA
E F
E 

Ce~~~~~~~ PP~~~~E r

E 7

E r E r
£ F

E 7r 
E 0

E F DDE: D r.
[ F 0

E£ F
cE F DP

E D
eC r occccc cecccccccccccccrC

L C ~ bCCCCCCCCCCCC~tC~C~t(CCCr

Clusters in unsplit graph



2
3

DRBBBBBBBBBBBBBBBBBBBBBBBBB
0
0
D
D
0
D

cAd 

D
0
0
0
D

a.
DCCCCCCCCCCCCCCCCCCCCCCCCC

1
3
6

AAAAAAAAAAAAAAF
F
F
F

F

FF

r
r

F

CF

F
F

F
F
or
F

F

F

Clusters in unsplit graph (continued)



8
10
12

JHHHHHHHNHHHWN
J N

I
I
I
I
I

GGGGGGGGGGQGGG I
4 N
LLLLLLLLLLLLLLN

I I11
G&GGGGGGGGGGGGJ
D d

J0
O
0
O
O
0

D
0
0
0
0

J

J
dj
d

1

9
13

IAAAAAAAAAAAAAM
I M
I M
I M
I M
I
I
I
I
I
I
I
I

J

4
D J
KKKKKKKKKKKKKKK

M

M

M

M

I M
I HHHHHHHMHHHHM

Clusters in split graph
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7

I
I
I
I
I
I
I
I

J

J

J

J

N
N
N

N
N
N
N
N
N
N
N


